
www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

Development of Multi-Processor

System on chip using Soft core: A

Review

Prashant S. Titare, D. G. Khairnar

1
Research Scholar, E&TC Department, D Y Patil College of Engineering, Akurdi,

Pune, India
1
pstitare@dypcoeakurdi.ac.in

2
Professor, E&TC, D Y Patil College of Engineering, Akurdi, Pune, India

2
dgk@ee.iitb.ac.in

ABSTRACT

ARTICLE INFO

Review of multiprocessor systems on a chip (MPSoC) which provides parallel

computing of multiple processes is presented in this paper. Today’s world demand for

high performance with low power consuming embedded devices. The demand to

increase speed and to satisfy the requirements of modern embedded application, like

image processing, audio or video encoding or decoding, network application, and

many more, has encouraged the development of MPSoC. The solution to increase

speed with minimal increase in a computational power, is to use several processors

and execute parallel tasks on them. Implementation of such architecture on a single

chip (MPSoC) is feasible and appealing, due to the advancements in FPGA

Technology. This paper provides a survey of implementation of MPSoC using soft-

core processors like MicroBlaze, NIOS-II, Leon, Xtensa in addition to their

comparison. Also it presents the speed improvement method along with review of

different topologies.

Keywords— VLSI, FPGA, MPSoC, soft core processors.

Article History

Received: 8
th

March 2020

Received in revised form :

8
th

March 2020

Accepted: 10
th

 March 2020

Published online :

11
th

 March 2020

I. INTRODUCTION

Embedded systems, initially, were being used as simple

controllers for specific application. Such system requires

more computational power to execute the need of modern

application, like encoding or decoding of audio or video

information, image processing, etc. and hence, the

multiprocessors system on a chip (MPSoC) is one of the

alternatives to deal with such escalating computational

needs. [1][15][16].

An MPSoC is a multi-processor on a single silicon-chip

which may include about two or more number of

processor-memory modules (PMMs). Considering ten

PMMs, if the memory modules are grouped together into

a single first level cache (L1) that is shared between all

the available cores then it is called a multi-core processor.

The term multi core architecture is used if two or more

number of cores is developed on the chips that are

interconnected together by appropriate resources. [22].

MPSoC have become the important necessities of fast

growing technology. Faster speed along with efficiency is

the ultimate requirement of embedded consumers. All

these requirements are possible in small integrated chips

through MPSoC. Thus MPSoCs have emerged as an

important class in the field of micro-electronics and VLSI

(Very Large Scale Integration). MPSoC shows an absolute

method to incorporate multiple processing cores on a

single silicon chip. It is promising to recognize following

five major steps for proper designing of an MPSoC: (a) to

develop an application; (b) to configure platform

accurately; (c) To program a code; (d) To map an

application on to the platform; (e) And to debug.

Most of the MPSoC development work is centered at

one of the steps like platform configuration or application

mapping [2].

According to the system architecture model, MPSoCs

are classified as Homogeneous and Heterogeneous. The

Homogeneous MPSoC has processors of similar

architecture while Heterogeneous type has different

processor architecture on same platform.

Following are the certain levels of design space

exploration, enabled by MPSoC:

 Network on chip (NoC): It explores various

topologies, routing algorithms, priority schemes, etc;

 Operating System (OS): It is a program to regulate

different scheduling algorithm. For example, Task

migration, Dynamic Voltage and Frequency Scaling

(DVFS), distributed memory architecture,

mailto:pstitare@dypcoeakurdi.ac.in1
mailto:dgk@ee.iitb.ac.in2

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 2

monitoring their respective parameters are some of

the tasks controlled by OS.

 Network Interface (NI): Exploration to NI is used to

guarantee QoS (Quality of Service) for injection

control.

 Processing Elements (PEs): It is used to examine

various processor architectures, according to the

application requirement.

 Power dissipation: There are different types of power

dissipation at processor level, static or dynamic

based on energy dissipated and frequency.
 Inter-board communication: Central system monitors

and coordinates hardware operations through

MPSoC. [3]

This paper provides a review on establishing the

environment for MPSoC using Micro-blaze, NIOS-II,

Leon, and Xtensa. The communication architecture along

with different topologies is explained.

This paper is organized in following sequence, section

II: Soft processor core architecture is explained along with

feature; Section III: Comparison of different soft core

processors; Section IV: Communication architecture;

Section V: MPSoC Architecture; Section VI:

Communication topologies; Section VII: Mapping for

MPSoC; Section VIII: The complete system and Section

IX: Conclusion.

II. SOFT PROCESSOR CORE

ARCHITECTURE

A. Micro-Blaze

The embedded processor named Micro-Blaze is a 32-

bit soft core reduced instruction set computer (RISC)

which is optimized for implementation on Xilinx Field

Programmable Gate Array (FPGA).

Fig. 1 Microblaze Core Block Diagram [9]

The Micro-Blaze processor is exceedingly configurable,

as it allows selecting a definite set of features required by

design. It implements Harvard architecture. It signifies

that it has different interfacing units for data bus and

instruction bus access. Each bus unit is further divided

into a Local Memory bus (LMB) and On-Chip Peripheral

Bus (OPB). LMB provides an access to on-chip dual port

block RAM. On-chip and off-chip memory and

peripherals, both are interfaced using OPB. The Micro-

Blaze core also facilitates with 8 input and 8 output

interfaces to the Fast Simplex Link (FSL) buses. These

FSL buses are unidirectional dedicated communication

channels, detail explanation is in section IV. [1] [9].

Micro-blaze is a soft core specifically designed for Xilinx

FPGAs.

B. NIOS-II

Nios-II is a soft core processor explicitly designed for

Altera FPGA devices. It is an instruction set architecture

(ISA). Advantage of having ISA is that it implements the

instructions for certain functional units. It is a hardware

design which implements the Nios II instruction set. The

processor core only includes the required circuit to

implement the NIOS II architecture. It does not comprise

of any peripheral interface unit or any external connection

logic. [12]

Fig. 2 NIOS II Core Block Diagram [12]

Depending on the memory size, data-width and

peripherals required, NIOS II architecture can be

configured. NIOS supports 6-stage pipeline and Harvard

memory architecture. Customization of instruction is

possible with this architecture to improve performance.

[23]

There are many other soft-core processors available

like Leon by Gaisler research and Xtensa series from

Tensilica. Leon3 supports maximum operating frequency

of around 400 MHz by using ASIC implementation while

MicroBlaze and NIOS-II has 200 MHz on their respective

FPGA platform. However, Xtensa has the highest design

flexibility since unlimited custom instructions and

execution units can be implemented on the processor‟s

core. Comparison of such soft cores is explained in further

section. [25]

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 3

III. COMPARISON OF SOFT-CORE

PROCESSOR

Following table shows the differences between different
soft-core processors.

Table 1: Soft-core processor comparison [25]

Properties
Micro -

Blaze
NIOS-II LEON3

Xtensa

XL

FPGA/ASIC

Technology

Virtex

(Xilinx

Based)

Stratix

(Altera

based)

0.13 micron

technology

0.13

micron

technolo

gy

Speed MHz

(ASIC /

FPGA)

200 MHz

(FPGA)

200 MHz

(FPGA)

125 MHz/
400 MHz

(FPGA/ASI
C)

350 MHz

(ASIC)

Reported

Speed in

DMIPS

 166 150 85 N/A

Standard for

Floating Point

Unit (optional)

IEEE 754 IEEE 754 IEEE 754
IEEE

754

Cache Memory
64 KB

64 KB

64 KB

64 KB

Pipeline 3 stage 6 stage 7 stage 5 stage

Custom

Instruction
None

256

instruction

approximatel

y

None
Unlimite

d

Size of

Register File
 32 32 2-32 32 / 64

Area 1269 LUTs 700-1800
LEs 3500 LUTs 0.26mm2

Implementatio

n on hardware
FPGA FPGA FPGA/ASIC

FPGA,
ASIC

IV. COMMUNICATION ARCHITECTURE

A. Fast Simplex Link (FSL) Overview

FSL buses are used as a communication link between

MicroBlaze cores. MicroBlaze has eight input and eight

output FSL interfaces. These FSL channels are dedicated,

unidirectional, point to point data streaming interfaces.

The width of FSL interface is 32 bit. Data and control

words can be exchanged through FSL channel. The FSL

interface can have maximum speed up to 300 MB/sec

depending on the target device. The FSL bus system is an

ideal choice for inter processor communication (like

MicroBlaze processor to another MicroBlaze processor)

or Input-Output streaming communications [11].

The features of the FSL bus interface are:

 Unidirectional and Non-arbitrated

communication

 Dedicated, point-to-point communication

 Support for data and instruction communication

 600 MHz standalone operation

 Configurable data size

 FIFO based communication [1]

Fig. 3 FSL bus signal [11]

One Master drives FSL bus and in turn FSL drives one

Slave. Above figure signifies the working principle of the
FSL bus system and its signals.

FSL link allows data transfer through group of macro
supported by Xilinx EDK (Embedded Development Kit).

Reading and writing of FSL allows communication
between processors. [1]

B. Heterogeneous IP Block Interconnection (HIBI)
The platform includes multiple Altera Nios II soft-core

processors and custom hardware accelerators, which are

interfaced using Heterogeneous IP Block Interconnection
(HIBI) communication architecture. HIBI allows multiple

NIOS II processors to interconnect.
Maximum efficiency with minimum energy per

transmitted bit together with quality of service (QoS) is

the main objective of HIBI interconnects. [5]
An automated synthesis method for generating

hierarchical bus structures was presented by Ryu and

Mooney[27][5]. Bus topology can improve performance

and speedup by 2.4 times, as presented by authors, Ryu et

al., They also proved that number of gates required is

reduced by 37% [17]. Lahiri et al., shows the utilization of

automated design space exploration with two application

examples. They concluded that ideal communication

architecture could achieve 3.2 to 4.9 times speedup over

the single shared bus whereas multiple buses could

achieve speedup of 1.8 to 2.7 times. However, the area of

a network was compromised with speedup [18].
Over a single shared bus, HIBI interconnect use

hierarchical structures in order to improve performance

and scalability. Zeferino et al., concluded that mesh based

NoC is having better switching of tasks as compared to

simple bus [5][19]. Network topologies are detailed in

Section VI. They estimated that mesh topology

performance is seen improved if number of processor is

around 16 to 25, assuming that same frequency is present

over an entire network.

If signal propagation delay on wires is more, then

mesh topology demonstrates higher efficiency due to

shorter links between the nodes. They demonstrated an

MPSoC system of 8 processors using HIBI on FPGA.

This system used 36400 logical elements, which is

approximately 88% of logical resources available on

Altera FPGA (Stratix 1840). [5][20]
As the HIBI interconnection can be scaled upwards to

certain topologies, as explored in Section VI, they are

referred as NoC (Network on Chip). Its hierarchical

nature provides freedom of choice for selection of
capacity for data transfer and also the properties of

programming become simpler due to this. Developing

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 4

such architecture with multiple processors is termed as

MPSoC, as explained further.

V. MPSOC ARCHITECTURE

VLSI, the branch of microelectronics starts evolving

since 1990. The single processor technique developed for

an embedded system provides application from

communication domain, networking domain, etc.

However, multimedia application requires system having

multiple processors to compute the given task in shorter

stipulated time as compared to single processor time.

Processors involved in multiple processing systems

should have the capacity of parallel programming to

improve its performance. Very Long Instruction Word

(VLIW) based processors are the example for the same,

having parallelism approach for the execution of a task.

On the other hand, ASIC architecture has specific blocks

and is not preferred for the design of general purpose

application. Following block diagram corresponds to

multiple processor architecture.

 CPU CPU

Cache Cache

I/O and

Memory

Interface

Cache Cache

CPU CPU

Fig. 4 Block diagram of MPSoC platform [7]

MPSoC architecture includes multiple processors

which collectively has CPU and memory together, to

control all the peripherals (I/O or Input /Output devices)

over a network. Memory sharing, data transfer and

interconnection are main concern of multi-processing

system. [7] Almasi and Gottlieb, et al., defined

multiprocessors as parallel processing elements that

collectively cooperate and communicate to compute

complex problem at faster rate. [24][60]

Designing an environment for MPSoC architecture

comprises of CPU, cache memory, I/O units and memory

interface, as shown in figure 4. CPU interconnection

supports higher level of component integration which will

reduce the design area and design time that too without

sufficient loss in efficiency. MPSoC environment can be

designed with hardware-software co-design, including

synthesizable hardware interfaces, hardware accelerators,

operating systems (OS) and device drivers. All these units

are controlled by OS & Application Programming

Interface (API) [8][63]. Thus all the above mentioned

units along with communication link (like FSL, HIBI)

complete the MPSoC architecture. Subsequent section

will elaborate on methods to interconnect multiple

processors in a network.

VI. COMMUNICATION TOPOLOGIES

Multiple processors can be inter-connected to each other
using different topologies. Selection of topology depends
on the type of soft-core to be used. Some of the network
topology used for connecting various processors (CPU)
in a cluster through the FSL link or HIBI communication
architecture for point to point data transfers is discussed
as follows: [1]

 Bus topology: In this topology, all the computers

are interconnected using a single line through trans-

receivers. All lines should be closed with matched

termination. Speed of operation and network

performance depends on the number of CPUs

available on a network. If one CPU transmits a

message, then rest all the CPUs will be waiting to

transmit their data. At a time only one can send

data. The complete communication network will

fail if there is even a single break in the main line.

Such bus networks are also called passive topology

as the computers or CPUs on the bus only responds

(or listen) to data transmitted. They do not transfer

data from CPU to CPU.

Fig. 5 Bus network

 Hierarchical bus network: It is also termed as split-
bus architecture. It is a network that connects two or

more buses using Bus Bridge. This bus bridge is a
controllable connection point, which when enabled

makes the connection otherwise disconnect it.

Fig. 6 Hierarchical Bus network

 Ring Topology: A Network in which one CPU is

connected to next CPU, in continuous manner and in

turn last CPU is connected to first CPU, forming a ring

pattern. The data is transferred from one node (CPU)

to another until it reaches the last destination node

present in a network. The main drawback of this

topology is that the data propagation delay will be

longer if transmitting CPU and receiving CPU are

present at longer distance in a ring. More the number

of nodes, longer will be the propagation delay.

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 5

However, it has the advantage lesser circuit

complexity as the number of interconnections is less.

Fig. 7 Ring network

 Mesh Network: It is a network where each and every

node (CPU) is interconnected to each other. This

type of topology has least travelling time for data

transfer between any nodes over a network. This is

because of direct connection between transmitting

node and receiving node. The major drawback of

such topology is that the circuit complexity

increases as the number of interconnection increases

due to increase in the number of nodes in a network.

 Fig. 8 Mesh network

 Star Topology or network: This topology has a

central node connected to each and every node

present in a network. Its structure seems to be like a

star and hence the name. One centralized controlled

called Master CPU and multiple slave type of

configuration can be achieved in such topology.

Due to master slave architecture, central CPU

decides which task has to be allocated to which

CPU, and can also collect results from all these

CPUs. The main drawback is if the central node

fails, then entire control is lost and the complete

system fails. As all the operations are regulated

through central node, then communication

bottleneck can occur for the large bulk of data

operations.

Fig. 9 Star network

Multi-Star network can be created by grouping individual
star network. The central star network is responsible for

control of multiple star networks attached to it.
All these topologies have some advantages and

disadvantages. Depending on the application
requirements, a particular type of topology can be

selected and mapped on MPSoC.

VII. MAPPING FOR MPSOC

Mapping of tasks for MPSoC means tasks can be

mapped to different CPUs as per topology selected.

Previous literature shows the availability of multiple task

mapping algorithms. However, the proper approach has

to be followed while mapping the tasks on MPSoC.

Different types of approach for task mapping are

mentioned below which are classified on the basis of

timing instants when these tasks are mapped:

 During design time: if the static or offline mapping

approach is preferred then MPSoC resources can be
explored at better level using complex process. The

only major issue with static mapping is to handle
dynamic tasks.

 During run time: the dynamic or also called online

mapping approach needs simple but faster processes
as it is handling application when it is in execution

mode.

There are two different dynamic mapping
approaches for designing an MPSoC, as mentioned

below:

 Mapping with resources reservation: This method

helps to verify whether enough MPSoC resources are

available or not before mapping their respective
application tasks on system.

 Mapping without resources reservation: This

approach helps to map the initial task of the
application keeping the remaining tasks in waiting

state. Task belonging to wait-state are mapped
whenever required. Hence in this case, application

execution will start faster, but may wait for other

resources to get into ready state.

Run time mapping of tasks in MPSoC is a need for the

dynamic mapping approach. Such mapping can be
controlled using:

 Centralized: One processing element will be

centralized, which will control, regulate and
combine the mapping process. This central (or

single) master will manage the mapping of
resources. Due to single centralized control,

bottleneck is observed with respect to scalability and

performance.

 Distributed: Multi-master or multi-cluster approach
is preferred. One processing element in each
network or in each cluster is responsible for
mapping of tasks. It is complicated but better
approach with respect to performance and speed. [6]

Thus such mapping of tasks on MPSoC with
communication link forms the complete system as
discussed in further section.

VIII. THE COMPLETE SYSTEM

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 6

MPSoC system is collectively a combination of

multiple processing cores, having tasks mapped onto it

with the respective algorithms. These cores are

interconnected to each other using communication link

like FSL, etc depending on the type of FPGA. A Single

Processor system on a chip (SPSoC) consists of one

CPU, program and data memory, timer and an

application based peripheral. The major difference

between SPSoC and MPSoC is that in MPSoC, the

number of CPU is not limited to one. Depending on an

application requirement, program or data memory can be

configured. Additional program memory can be used to

operate them in parallel. So, MPSOC provides an

advantage of speed through parallelism, thus improves

the overall performance. [1]

P. Huerta et al., have defined parameters named

„Speedup‟ and „Efficiency‟ to check MPSoC

performance as elaborated in the next section. [1]

A. Speedup and efficiency

Speedup is the ratio of time taken by the single

processor (ts) to the time taken by the „p‟ number of

processor (tp) executing in parallel for MPSoC. Ideally,

this ratio should have the number equal to the number of

processor (p). It indicates as the number of processor

increases, speedup increases. However, speedup never

remains equal to p, as there is always a communication

overhead. It means certain time is consumed during task

mapping and inter-communication, because of which it is

lower than p. [1]

 For parallel operating processors in MPSoC,

performance can also be measured through efficiency.

Efficiency is defined as the ratio of speedup to the

number of processor (p). An ideal value of efficiency

should be one. [1]

B. Matrix Multiplication Application

The Matrix multiplication of integers and floating

point numbers were performed by P.Huerta, et al., [1].

An application of matrix multiplication was tested by

them to check the parallel execution of the task. The

demonstration involves a technique or an algorithm for

computing matrix multiplication application. This

technique was implemented by transmitting rows of first

matrix and entire second matrix to each processor present

in a network. Then each processor computes the matrix

multiplication for that particular row and corresponding

second matrix received. Later after computation, this

processor returns the result back to main central

processor acting as master processor. Master or central

processor is responsible to collect results from each

processor and produce output in desired form.

By using this application, authors [1] performed

different test by varying different parameters like matrix

size, data types, number of processors, etc. Such tests

were performed to check the application execution time.

The total time consumption includes time taken for the

collection of data (matrix values) from memory,

transferring data to each processor, processing

(multiplication) of the collected data, the collection of

results from each processor and storing final results back

to memory. [1]

They concluded that the results were not as good as it

could be expected since the efficiency gets affected as the

number of processors increases. However, this effect is

less as compared to speed improvement obtained from

parallelism. For example, if the matrix multiplication by

single processor takes 10 micro second (µs) to conclude

with results, then ideally dual processor should compute

it in 5µs. But this time is more than 5µs. This is due to

communication overhead. Time taken for distributing the

data in multiple processors and collecting it back gets

added in total time. However, due to parallelism, the

overall time consumed gets reduced as compared to the

single processor system.

P. Huerta et al., [1] performed the matrix

multiplication on floating point values as well. As

compared to integer value, the floating point matrix

multiplication consumes more time as the information

contents present in the data are larger than the integer

values. However, the time required to transfer data will

remain same. This extra time consumed in the floating

point operation as compared to integer matrix

multiplication can be reduced using floating point

processors. As the processing time for floating point

multiplication is longer, improvement in efficiency and

speedup for MPSoC is observed. However, in floating

point as well, there will be communication overhead for

the transfer of matrix on multiple processors and

collecting results back. To overcome this problem of

overhead, the common message can be broadcasted to all

the processors, was suggested. [1] This will reduce the

time required to transfer the same message to each

processor individually. With respect to the previous

application of matrix multiplication, second matrix is

common to all processors and hence can be broadcasted

to all the processors. This technique helps to reduce the

sufficient amount of time.

IX. CONCLUSION

This paper presents the review on MPSoC architecture

for different soft-core processors like Microblaze and

NIOS-II along with the link for communication between

the multiple processors, as per survey from referred

papers. As per review and to the best of our knowledge, it

is observed that FSL inter-processor link is better for

Microblaze processor due to its high data rates capacity

and HIBI interface for NIOS-II processor because of its

scalable and programmable property.

The different types of communication topologies are

studied and the reason why particular topology is to be

selected is elaborated from the survey. From review, it

can be concluded that star topology is better for

Microblaze as master processor, or the central node

decides the task distribution and overall processing.

Entire control is with master Microblaze which provides

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 7

final results of application. Also from investigation it is

observed that Microblaze can have 8 interconnections.

From this it can be concluded that 8 subsystems having 8

processors in it can be connected to master Microblaze,

forming multi-star network. As per review obtained from

the study of MPSoC for NIOS II architecture, it is

observed that mesh topology provides better performance

because of its point to point dedicated interconnection

through HIBI interface.

Study on MPSoC also involves different algorithm

implementation to improve application speed, to reduce

the power consumption, without contributing external

hardware into it. Also clocking strategies to improve

speed, porting of different OS on multiple processors will

also contribute some advancement on this.

REFERENCES

[1] P.Huerta, J.Castillo, J.I.Mártinez, V.López, “A
MicroBlaze based Multiprocessor SoC” HW/SW Codesign

Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid Spain.‟
ResearchGate – 29226 7954, pg 423-430, v‟2005.
[2] Eduardo W. Wächter, Carlo Lucas, Everton A. Carara,

Fernando G. Moraes, “An Open-source Framework for Heterogeneous
MPSoC Generation” FACIN - PUCRS - Av. Ipiranga 6681-Porto
Alegre - 90619-900 – Brazil, IEEE „2012

[3] Eduardo Weber Wächter, Adelcio Biazi, Fernando G.
Moraes, “HeMPS-S: A Homogeneous NoC-Based MPSoCs Framework
Prototyped in FPGAs,” PUCRS – FACIN – Av. Ipiranga 6681 – Porto

Alegre – 90619-900 – Brazil., IEEE 2011
[4] Tero Arpinen, Petri Kukkala, Erno Salminen, Marko
Hännikäinen, and Timo D. Hämäläinen, “Configurable

Multiprocessor Platform with RTOS for Distributed Execution of UML
2.0 Designed Applications,” Tampere University of Technology,
Institute of Digital and Computer Systems, Korkeakoulunkatu 1, FI-

33720 Tampere, Finland., ISSN: 1558-1101 IEEE July 2006.
[5] Erno Salminen, Tero Kangas and Timo D. Hamalainen,
“HIBI Communication Network for System-on-Chip,” Tampere

University of Technology, P.O. Box 553, FIN-33101, Tampere,
Finland. Journal of VLSI Signal Processing 43, 185–205, Springer
Science & Business Media, LLC, Netherlands. DOI: 10.1007/s11265-

006-7270-6, May 2006.
[6] Marcelo Mandelli1, Alexandre Amory1, Luciano
Ost2, Fernando G. Moraes1, “Multi-Task Dynamic Mapping onto NoC-

based MPSoCs,” 1PUCRS – FACIN – Av. Ipiranga 6681 – Porto
Alegre – 90619-900 – Brazil, 2LIRMM – 161 rue Ada, Cedex 05 –
Montpellier – 34095 – France, DOI: 10.1145/2020876.2020920, August

2011.
[7] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin,

“MPSoC Technology”. IEEE Transactions On Computer-Aided Design

Of Integrated Circuits And Systems, Vol. 27, No. 10, DOI
10.1109/Tcad.2008.923415, pg no 1101 to 1113, October 2008.
[8] Wander O. Cesário, Damien Lyonnard, Gabriela Nicolescu,

Yanick Paviot, Sungjoo Yoo, and Ahmed A. Jerraya, “Multiprocessor
SoC Platforms: A Component- Based Design Approach,” TIMA
Laboratory, IEEE Design & Test of Computers, IEEE Design and Test

of Computers 19(6):52 - 63 · December 2002, DOI:
10.1109/MDT.2002.1047744 (2002 IEEE).
[9] MicroBlaze Processor Refrence Guide, Embedded

Devel;opment kit 13.1, Xilinx, http://www.xilinx.com, September 2018
[10] EDK Concepts, Tools, and Techniques, Xilinx,
http://www.xilinx.com, July 2018

[11] LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11f),
Xilinx, http://www.xilinx.com, November 2018
[12] NIOS II Processor Refrence Handbook, Altera,

http://www.altera.com, August 2017.

[13] Nios II Integrated Development Environment, Altera

Corporation May 2007, http://www.altera.com, January 2017
[14] Nios II Performance Benchmarks, Altera Corporation July
2013, http://www.altera.com, August 2017

[15] Wolf, W: “The Future of Multiprocessor Systems-on-
chip” Proceedings of the 41st annual Design Automation Conference

(DAC‟04)SanDiego, New York, USA ©2004 ISBN:1-58113-828-

8 DOI 10.1145/996566.996753, Pages 681-685, June 07 - 11, 2004.

[16] Wolf, W: “Multimedia Applications of Multiprocessor
Systems-on-Chip”. Proceedings of the Design, Automation and Test in

Europe Conference (DATE‟05). IEEE Computer Society Washington,
DC, USA ©2005, Vol 3, pages 86-89, ISBN:0-7695-2288-2 DOI
10.1109/DATE.2005.217 March 2005.

[17] K. K. Ryu and V. J. Mooney III, “Automated bus generation
for multiprocessor SoC design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 11, pp 1531–

1549, November 2004.
[18] K. Lahiri, A. Raghunathan, and S. Dey, “Design space
exploration for optimizing on-chip communication architectures,” IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, vol.
23, no. 6, pp. 952–961, 2004.
[19] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin, “A

study on communication issues for system-on-chip,” Proceedings of the
15th Symposium on Integrated Circuits and System Design (SBCCI),
SBCCI, Porto Alegre, Brazil, December 2002, pp. 121–126.

[20] Erno Salminen, Ari Kulmala, and Timo D. Hämäläinen
“HIBI-based Multiprocessor SoC on FPGA” Published in IEEE
International Symposium on Circuits and system. IEEE 2005 Tampere,

Finland. DOI:10.1109/ISCAS.2005.1465346 0-7803-8834-8/05/$20.00
©2005 IEEE
[21] Carara, E.; et al. "HeMPS - a Framework for NoC-

based MPSoC Generation". In: PUCRS – FACIN – Av. Ipiranga 6681
Porto Alegre – 90619-900 – Brazil, ISCAS‟09, 978-1-4244-3828-
0/09/$25.00 ©2009 IEEE pp. 1345 – 1348, 2009.

[22] Stefan Aust, Harald Richter, “Energy aware MPSoC with
Space-sharing for real time apllication” in The Fifth International
Conference on Advanced Engineering Computing and Applications in

Sciences (ADVCOMP 2011), Lisbon, Portugal,
www.esearchgate.net/publication/216680154, November 2011.
[23] Siegfried Brandstätter And Mario Huemer, (Senior Member,

IEEE) “A Novel MPSoC Interface and Control Architecture for
Multistandard RF Transceivers”, IEEE Access Journal of Digital

Object Identifier 10.1109/ACCESS.2014.2345194, Vol 2, pp no 771 to

787.
[24] G, S. Almasi and A. Gottlieb, Highly Parallel Computing,

2nd edition, Benjamin-Cummings Publishing Co., Inc. Redwood City,
CA, USA, pp 670-678, ISBN: 0-8053-0443-6, ©1994.
[25] Jason G. Tong, and Ian D.L. Anderson “Soft core processors

for embedded systems”. Research centre for integrated micro-systems,
University of Windsor.18th international conference on micro-
electronics-2006, ISSN : 1-4244-0765-6/06/$20.00 @2006 IEEE

[26] Cheng-Min Lien, Ya-Shu Chen, Chi-Sheng Shih, “On-Chip
Bus Architecture Optimization for Multi-core SoC Systems”, Published
in Software Technologies for Embedded and Ubiquitous Systems.

SEUS 2007. Lecture Notes in Computer Science, vol 4761. Springer,
Berlin, Heidelberg, ISBN 978-3-540-75663-7, pp 301-310, „2007.
[27] Kyeong Keol Ryu, Eung S. Shin, Vincent John Mooney, " A

comparison of five different multiprocessor SoC bus architectures”,
Published in IEEE Proceedings Euromicro Symposium on Digital

Systems Design, ISBN: 0-7695-1239-9, August 2002,

DOI:10.1109/DSD .2001.952283.
[28] Mohamed M. Sabry ; David Atienza “Temperature-Aware
Design and Management for 3D Multi-Core Architectures”,

Publisher: IEEE conference on Now Foundations and Trends, Print
ISBN: 9781601987747, DOI: 10.1561/1000000032, pp 96, Mrach 2014.
[29] Jacob Murray Paul Wettin Partha Pande Behrooz Shirazi,

“Sustainable Wireless Network-on-Chip Architectures” 1st Edition,
Published in Elsevier, eBook ISBN: 97801 280 36518, pg count 162,
March 2016

[30] T. Selvameena ; R. Arun Prasath “Out-of-order execution on
reconfigurable heterogeneous MPSOC using particle swarm
optimization”, 2017 International Conference on Innovations in

Information, Embedded and Communication Systems (ICIIECS), DOI
978-1-5090-3294-5/17@2017 IEEE Pages: 1 - 6, Year: 2017.
[31] Ali Hurson Hamid Sarbazi-Azad, “Dark Silicon and Future

On-chip Systems”, Published in Elsevier & Science Direct as Dark

Silicon and Future On-chip Systems, Volume 110, 1st Edition, eBook
ISBN: 9780128153598, pg count 304, July 2018.

[32] A. P. Johnson, R. S. Chakraborty, D. Mukhopadyay, “An
improved DCM based Tunable Random Generator for Xilinx FPGA”,
IEEE Trans. on Circuit & Systems, vol. 64, Issue 4, ISSN:1549-7747,pg

no 452 - 456, April 2017.

http://dx.doi.org/10.1145/2020876.2020920
https://www.researchgate.net/journal/0740-7475_IEEE_Design_and_Test_of_Computers
https://www.researchgate.net/journal/0740-7475_IEEE_Design_and_Test_of_Computers
https://doi.org/10.1145/996566.996753
https://doi.org/10.1109/DATE.2005.217
https://doi.org/10.1109/ISCAS.2005.1465346
https://www.semanticscholar.org/author/Kyeong-Keol-Ryu/2840921
https://www.semanticscholar.org/author/Eung-S.-Shin/2261340
https://www.semanticscholar.org/author/Vincent-John-Mooney/34779934
https://ieeexplore.ieee.org/xpl/conhome/7558/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7558/proceeding
https://doi.org/10.1109/DSD.2001.952283
https://ieeexplore.ieee.org/author/37086310210
https://ieeexplore.ieee.org/author/37085382043
https://ieeexplore.ieee.org/document/8276021/
https://ieeexplore.ieee.org/document/8276021/
https://ieeexplore.ieee.org/document/8276021/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8267166
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8267166

www.ierjournal.org International Engineering Research Journal (IERJ), Special Issue Page 390-397, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 8

[33] Logue J. D, Percey A K, Goetting F. Erich “Sychronized

Multi-output Digital Clock Manager”, Europeon Patent International,

Publication no WO 2002/029974, Appl no., PCT/US2001/031251,
ISSN : 0916-8524, vol E81-C, no.2, pgs 277-283, Feb 2013

[34] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I.
Martinez, T. Arslan, J. Perez, “R3TOS : A novel Reliable
Reconfigurable Real Time Operating system for Highly Adaptive,

Efficient, & Depandable computing on FPGAs”, IEEE Trans on
Computers, Vol 62, no. 8, pgs 1542 – 1556, August 2013.
[35] Chao Wang, Xi li, J. Zhang, P. Chen, Yunji Chen, X. Zhou,

Ray C, C. Cheung, “Architecture support for task out of order
Execution in MPSoCs”, IEEE Trans on Computers,
DOI.10.1109/TC.2014.2315628, pgs 1296-1310, August 2013.

[36] Slim Ben Othman, Ahmed Karim Ben Salem, Hedi
Abdelkrim, Slim Ben Saouo. “MPSoC Design Approach of FPGA-
based Controller for Induction Motor Drive” L.E.C.A.P.-

E.P.T./I.N.S.A.T.B.P. 676,1080 Tunis Cedex, Tunisia. pp. 134-139
2012 IEEE
[37] Roberta Piscitelli and Andy D. : “A High-Level Power

Model for MPSoC on FPGA” Pimentel Computer Systems Architecture
group Informatics Institute, University of Amsterdam, The Netherlands.
International Parallel & Distributed Processing Symposium.pg 259-272,

2011 IEEE.
[38] G. Almeida, Everton Carara, Rémi Busseuil, Nicolas Hebert,
“Predictive Dynamic Frequency Scaling for Multi Processor System on

Chip”, IEEE Conference on Programmable Logic, id no. 978-1-4244-
9472-9,pgs 1500-1503, year : 2011
[39] He Chen, Liang Yin, G. Peng, “Implementation of Multi-

core Embedded System on Compound Guiding System”, Beijing China,
id no.978-1-4577-0321-8/11, pg4348-4352, IEEE 2011
[40] F. Anjam, S. Wong, F. Nadeem, “A Shared Reconfigurable

VLIW MultiProcessor System”, Delft, Natherlands, id no. 978-1-4244-
6534-7/10, ISBN: 978-1-4244-6533-0 pp: 1-8 IEEE 2010
[41] Hristo Nikolov, Todor Stefanov, Ed Deprettere. “Efficient

external memory interface for Multi-processor platforms realized on
FPGA chips” LIACS, Leiden University, The Netherlands.

ISSN: 1946-147, elec: 1946-1488, IEEE 2007.

[42] V B Chandra, V Sharma, Dr. M. Chaudhari, “Issues with
designing a dual core processor with a shared L2 Cache on a xilinx

FPGA board”, Project report of researcher at Indian Institute of
Technology, Kanpur. (IIT Kanpur), Y3383,Y3393, May 2007
[43] G. Beltrame, L. Fossati, D. Sciuto, “High level Modeling &

Exploration of Reconfigurable MPSoCs”, NASA Conference on
Adaptive Hardware Systems, 978-0-7695-3166-3/08, pgs 324-337,
IEEE Conference, October 2008

[44] D. Gohringer, M. Hubner, E. N. Zeutebouo, J. Becker,
“Operating systems for runtime reconfigurable MPSoCs”, Research
article at International Journal of Reconfigurable Computing, Hindawi

publication, vol. 2011, id. 121353, pgs : 16, KIT, Germany, Feb 2011
[45] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, “UML
based Multi-Processor SoC Design Framework”, ACM transactions on

Embedded Computing Systems, (Nokia Research Centre) Vol. 5, no. 2,
pgs 281-320, May 2006

[46] S. pawar, J. Zalke, “Efficient Implementation of Ogg Vorbis

Decoder using Soft core Processor”, IOSR Journal of Engineering, Vol.
2,(4), pg: 928-931, April 2012
[47] Gaughan W., Embry-Riddle Aeronautics university, USA,

“Using an FPGA Digital Clock Manager to generate sub nanosecond
phase shifts for LIDAR (Light detection & ranging) applications”,
Conference on Programmable Logic, ISBN : 978-1-4244-6309-1,

pgs:163-166, March 2010.
[48] Wikipedia, (www. Wikipedia.org) Free Encyclopedia for
DCM, Peloton & MPSoC

[49] Xilinx White Paper on “Designing multi processor systems
in Xilinx Platform Studio”, WP262 (v2.0), Nov 2007
[50] Xilinx White Paper on “Digital Clock Manager (DCM)

Module”, DS485, Apr 2009.
[51] OpenRisc 1000, www.opencores.org, 2005
[52] Gaissler, J: The LEON processor. www.gaissler.com, 2005

[53] Xilinx: MicroBlaze Processor Reference Guide. (v 4.0).

2004
[54] Altera: Nios 3.0 CPU Data Sheet, 2004

[55] Altera: Nios II Processor Referente Handbook, 2005
[56] Xilinx: XAPP529: Connecting Customized IP to the
MicroBlaze Soft Processor core using the Fast Simplex Link (FSL)

Channel. (v 1.3). 2004
[57] FIPS, “Advanced Encryption Standard”, Nov, 2001

[58] Xilinx White Paper on “Embedded Design with The Xilinx

Embedded Developer Kit”, Apr 2015.

[59] Xilinx White Paper on “Getting started with the Microblaze
Development kit – Spartan 3E 1600E”, Nov 2007.

[60] Kyungho Ryu, Jiwan Jung, Dong-Hoon Jung, Jin Hyuk Kim,
and Seong-Ook Jung, Senior Member, IEEE, “High Speed, Low power
and Highly reliable Frequency multiplier for DLL based Clock

Generator” IEEE Transactions on very large scale integration (vlsi)
systems, ISSN no. 1063-8210, pgs 1484-1492,
DOI: 10.1109/TVLSI.2015.2453366 © 2015 IEEE.

[61] ML505/6/7 Virtex-5 Evaluation Platform, ML505
Schematic, Xilinx 1280415.
[62] Tarek Darwish, Sany Kabbani, Acile Sleiman “Multi-

Processor System Design on FPGA” Final Year Project Report at The
American University of Beirut, Faculty of Engineering & Architecture,
Spring 2005-2006.

[63] Siegfried Brandstätter1 And Mario Huemer2, (Senior
Member, IEEE) “A Novel MPSoC Interface and Control Architecture
for Multi-standard RF Transceivers”, IEEE. Translations, Volume 2,

ISSN 2169-3536, pp: 771-787, 2014.

https://www.researchgate.net/profile/Everton_Carara2
https://www.researchgate.net/scientific-contributions/70244480_Remi_Busseuil
https://www.researchgate.net/scientific-contributions/21345590_Nicolas_Hebert
https://doi.org/10.1109/TVLSI.2015.2453366

