Design & Analysis Of Composite Roller of Roller Conveyor System

#1 Mr. Milind Landage, #2 Prof. K.M. Narkar.

milind.landage@rediffmail.com
kiran.narkar@gmail.com

#1,2 D.Y. Patil college of Engg. Akurdi, Pune, India

ABSTRACT

The aim of this project is to study existing conveyor system and optimize the critical parts like Roller to minimize the overall weight of assembly and material saving. We used glass fiber as an alternative material for the roller conveyor. Paper also involves geometrical and finite element modeling of existing design and optimized design. Geometrical modeling was done using CATIA V5R20 and finite element analysis was done by using ANSYS 14.5 workbench. Results of Linear static analysis of existing design of M.S. roller and composite glass fiber roller design are compared, to prove design is safe. Composite glass fiber roller reduces considerable amount of weight.

Keywords - Rollers, Glass fiber, Optimization.

ARTICLE INFO

Article History
Received: 18th November 2015
Received in revised form: 19th November 2015
Accepted: 21st November, 2015
Published online: 22nd November 2015

I. INTRODUCTION

Conveyor systems are commonly used in many industries, including the automotive, agricultural, computer, electronic, food processing, aerospace, pharmaceutical, chemical, bottling and canning, print finishing and packaging. Although a wide variety of materials can be conveyed, some of the most common include food it ensue has beans and nuts, bottles and cans, automotive components, scrap metal, pills and powders, wood and furniture and grain and animal feed. Many factors are important in the accurate selection of a conveyor system. It is important to know how the conveyor system will be used before hand. Some individual areas that are helpful to consider are the required conveyor operations, such as transportation, accumulation and sorting, the material sizes, weights and shapes and where the loading and pickup points need.[3]

II. OBJECTIVES OF THE WORK

The following are the objectives of the study:
• Study existing roller of conveyor system.
• Geometry modeling existing roller.
• Analysis of existing roller.
• Modification of critical conveyor part i.e. roller for weight reduction.
• Analysis of Modified design for same loading condition.
• Recommendation of new solution for weight reduction.[2]

III. DESIGN OF ROLLER

3.1 Design of Original Roller
Material – MS

Composites are used in automobiles aerospace , mariness as well as different industrial applications. Components of gravity feeding roller conveyor include bearing, shaft, c-channel for stand, c-channel for chassis & roller. Out of these components roller weight is important considering total weight of gravity feeding roller conveyor system. Hence roller is selected & focused. Customer demands like cost saving, energy saving, higher productivity & good quality are challenges in market. Composite materials being versatile indifferent application offers properties like good corrosion resistance, higher strength, weight ratio, low deflection & high critical speeds.

Figure No.1-Roller Conveyor
E = 2.10*10^5 Mpa, ρ= 7860 Kg/m^3, Considering uniformly distributed load & FOS = 2
Maximum Stress Calculation for given condition
W= 36kg
D_1 = Outer diameter of roller = 46 mm
D_2 = Inner diameter of roller = 36 mm
w = Width of roller = 330 mm

y = Distance from neutral axis = 0.044/2 = 0.023 Considering uniformly distributed load,
Maximum Moment (Mmax) = W*L^2/8
= (36*9.81*.33^2)/8
Mmax = 4.807Nm
Moment of Inertia (I) =Π (D_1^4 - D_2^4)/64
= Π (0.046^4 – 0.036^4)/64
I = 0.13394*10^-6 m^4
Maximum bending stress σ_b = Mmax * y/ I
= 4.807* 0.023/ 0.13394*10^-8
σ_b = 0.5214 Mpa

3.2 Design of Composite Roller

Material – GF
E = 34000 Mpa, ρ= 2600Kg/m^3, Considering uniformly distributed load & FOS = 2

Maximum Stress Calculation for given condition
W= 36kg
D_1 = Outer diameter of roller = 58 mm
D_2 = Inner diameter of roller = 36 mm
w = Width of roller = 330 mm
y = Distance from neutral axis = 0.058/2 = 0.029 Considering uniformly distributed load,
Maximum Moment (Mmax) = W*L^2/8
= (36*9.81*.33^2)/8
Mmax = 4.807Nm
Moment of Inertia (I) =Π (D_1^4 - D_2^4)/64
= Π (0.058^4 – 0.036^4)/64
I = 4.72*10^-7 m^4
Maximum bending stress σ_b = Mmax * y/ I
= 3.973 * 0.029/ 4.72*10^-7
σ_b = 0.6013 Mpa

IV. MODELING OF ROLLER

![CATIA Model of MS roller](image)

VI. RESULT

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Material</th>
<th>Hand Calculation (MPa)</th>
<th>ANSYS Result (MPa)</th>
<th>Weight (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS</td>
<td>0.5214</td>
<td>0.31416</td>
<td>1.71</td>
</tr>
<tr>
<td>2</td>
<td>GF</td>
<td>0.6013</td>
<td>0.64201</td>
<td>1.09</td>
</tr>
</tbody>
</table>

CONCLUSIONS
• Existing design calculation shows the factor of safety is very greater than requirement and there is a scope for weight reduction.
• Critical parameter which reduces the weight is roller Material change to glass fiber.
• 38% of weight reduction is achieved due to composite material design.

ACKNOWLEDGMENT
Thanks to Dr. Panchgade & Prof. Kiran Narkar of D.Y. Patil College Of Engineering, Akurdi, Pune for their motivation & encouragement for providing useful necessary guidelines enabling preparing this paper. Their knowledge sharing helped in work progress & completion of paper work.

REFERENCES
[3] Shirong Zhang, Xiaohua Xia “Modeling and energy efficiency optimization of belt conveyors”, Department of Automation, Wuhan University, Wuhan 430072, China Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South
Africa ‘www.elsevier.com/locate/apenergy’16 March 2011