Crack Identification in Cantilever Beam by using Natural Frequencies through Experimental Set-Up & FEM Software

#1 Swapnil Dokhe, #2 Shailesh Pimpale,

1 swapnildokhe@gmail.com
2 shailesh_pimpale@rediffmail.com

#1,2 JSPM’s Rajashri Shahu College Of Engineering, Tathawade, Pune-411033, Maharashtra, India

ABSTRACT

The method of cracks detection in cantilever beams by monitoring the natural frequency and prediction of crack location and depth using experimental set-up and FEM software. Finite Element Method is used to determine the natural frequency of beam whereas the experimentation is performed using Fast Fourier Transform analyzer. In experimentation, cantilever beam with cracks are considered. The experimental results are validated with the results of FEM software. This formulation can be extended for various boundary conditions as well as varying cross sectional areas. A crack in a structural member introduces local flexibility that would affect vibration response of the structure, i.e., a crack causes a reduction in the stiffness and an increase in the damping of the structure. These changes of physical properties cause a reduction in the natural frequencies and a deviation in the mode shape. Therefore it is possible to predict the crack depth and crack location by measuring changes in the vibration parameters. Changes in the natural frequencies are more often considered than deviation of mode shapes, since frequencies can be measured more easily than mode shapes, and they are less seriously affected by experimental errors. This property may be used to detect existence of a crack together with its location and depth in the structural member. In this analysis the natural frequencies obtained from experimental analysis and finite element analysis are used to obtain the crack location and crack depth.

Keywords — Crack, FEM, FFT, Modal Analysis, Natural Frequency

I. INTRODUCTION

Many structural applications worldwide have been in use for many years. Their failure could lead to tragic consequences and therefore structures have regular costly inspections. During the last decades vibration based damage detection methods have attracted the most attention due to their simplicity for implementation. The presence of crack in structure changes its dynamic characteristics[2]. The change is characterized by change in modal parameters like modal frequencies, modal value and mode shapes associated with each modal frequency [13]. It also alters the structural parameters like mass, damping matrix, stiffness matrix and flexibility matrix of structure [13]. The vibration technique utilizes one or more of these parameters for crack detection. The frequency reduction in cracked beam is not due to removal of mass from beam, indeed the reduction in mass would increase natural frequency [13]. But reduction in natural frequency is observed due to removal of material which carries
significant stresses when defect is a narrow crack or notch. It reduces the stiffness of structure and natural frequency [3]. Due to presence of crack there is local influence which results from reduction area of cross section where it is located [29]. Finite Element Analysis is powerful tool which gives the reasonably accurate results for complicated structure. The present study is based on observation of changes in natural frequency.

II. EXPERIMENTAL WORK

The instruments used for experimental analysis are Fast Fourier Transform (FFT) analyzer, accelerometer, impact hammer and related accessories. The accelerometer is mounted on the beam using mounting clips. The accelerometer is mounted near the crack to capture the correct signal. The impact hammer is used to excite the beam whose frequency response function has to be captured. For every test, the location of impact of impact hammer is kept constant. The beam is tapped gently with the impact hammer. The experiments are performed on mild steel (IS 2062 : 2011 E250 A) beams with cantilever boundary conditions with crack of different depths at different locations. The properties of mild steel are, Young’s modulus (E) 2.1 e11 N/m², density (ρ) 7860 N/m³ and Poisson’s ratio 0.3. Specimen beams under consideration have circular cross section area. For cantilever beam the cross sectional diameter is 40 mm and length 463 mm. The geometry of beams is as shown in Figure 1. Crack depth is represented in terms of (a/d) ratio where a is depth of crack and d is diameter of beam and crack location is represented in terms of (e) where e is ratio of location of crack at distance L1 from the fixed support to the length of the beam L. The experimental setup is as shown in Figure 2. The aim of experimental analysis is to verify the practical applicability of the theoretical method developed. For the beam with single cracks, transverse and open cracks are considered. Initially, the natural frequency of uncrack beam is found out. Hairline crack is generated to simulate the actual crack in the working components. There after depth of crack is increased. The change in natural frequency due to the crack is monitored. Table I shows the natural frequencies of simply supported beam with single crack.

III. COMPUTATIONAL WORK

The cantilever beam of the cross sectional diameter is 40 mm and length 463 mm was prepared from mild steel. The Finite Element Method (FEM) of an artificially cracked and un-cracked beam had carried out with the help of ANSYS 14.5 package, the cracked beam is modeled as a solid beam. The mesh generation, analysis, display of results, are all performed within ANSYS Workbench 14.5. For the natural frequencies by FEM software refer Table II and all mode shape are as shown in Fig. 5-9.
TABLE I
 natural frequencies of cantilever beam by experiments

<table>
<thead>
<tr>
<th>CRACK SIZE and LOCATION (mm)</th>
<th>NATURAL FREQUENCY by EXPERIMENTS (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>a/d</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>16</td>
<td>0.4</td>
</tr>
<tr>
<td>17</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE II
 natural frequencies of cantilever beam by FEM software

<table>
<thead>
<tr>
<th>CRACK SIZE and LOCATION (mm)</th>
<th>NATURAL FREQUENCY by FEM (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>a/d</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>16</td>
<td>0.4</td>
</tr>
<tr>
<td>17</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21</td>
<td>0.5</td>
</tr>
</tbody>
</table>
The crack is generated at known location in mild steel beam. The changes in natural frequencies for the uncracked and cracked beams are measured. The predicted values are determined by theoretical and experimental technique. Table I shows the natural frequency values extracted for cantilever beam with single crack determined by using experimentation. Table II shows the natural frequency values extracted for cantilever beam with single crack determined by using FEM software. The results for crack location (e), crack size (a/d) are computed. Table III shows the % reduction in natural frequencies for crack location (e), crack size (a/d) between cracked and uncracked values for cantilever beam with single crack by using experimentation. Table IV shows the % reduction in natural frequencies for crack location (e), crack size (a/d) between cracked and uncracked values for cantilever beam with single crack by using FEM software. It is observed that experimental results have some deviation from the results obtained by FEM as model of structure generated by Finite Element Analysis differs from actual structure. Hence the response of structure in practice differs. The results are close to the actual for finding the crack locations. These results approach to the actual results found by FEM as compared to the experimental findings. The results of crack depth findings are close to the actual depth for large (a/d) ratio. Due to the high stiffness, the vibrations are damped and natural frequency does not reduce.

Table III

<table>
<thead>
<tr>
<th>CRACK SIZE and LOCATION</th>
<th>% REDUCTION in NATURAL FREQUENCY by EXPERIMENTS (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>a/d</td>
</tr>
<tr>
<td>1</td>
<td>0.865</td>
</tr>
<tr>
<td>2</td>
<td>0.865</td>
</tr>
<tr>
<td>3</td>
<td>0.865</td>
</tr>
<tr>
<td>4</td>
<td>0.865</td>
</tr>
<tr>
<td>5</td>
<td>0.865</td>
</tr>
<tr>
<td>6</td>
<td>0.865</td>
</tr>
<tr>
<td>7</td>
<td>0.865</td>
</tr>
<tr>
<td>8</td>
<td>0.865</td>
</tr>
<tr>
<td>9</td>
<td>0.865</td>
</tr>
<tr>
<td>10</td>
<td>0.865</td>
</tr>
<tr>
<td>11</td>
<td>0.865</td>
</tr>
<tr>
<td>12</td>
<td>0.865</td>
</tr>
<tr>
<td>13</td>
<td>0.865</td>
</tr>
<tr>
<td>14</td>
<td>0.865</td>
</tr>
<tr>
<td>15</td>
<td>0.865</td>
</tr>
<tr>
<td>16</td>
<td>0.865</td>
</tr>
<tr>
<td>17</td>
<td>0.865</td>
</tr>
<tr>
<td>18</td>
<td>0.865</td>
</tr>
<tr>
<td>19</td>
<td>0.865</td>
</tr>
<tr>
<td>20</td>
<td>0.865</td>
</tr>
<tr>
<td>21</td>
<td>0.865</td>
</tr>
</tbody>
</table>
TABLE IV

<table>
<thead>
<tr>
<th>CRACK SIZE and LOCATION (mm)</th>
<th>% REDUCTION in NATURAL FREQUENCY by FEM (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>a/d</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>16</td>
<td>0.4</td>
</tr>
<tr>
<td>17</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
</tr>
<tr>
<td>21</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fig. 10 Effect of crack depth on the natural frequency of the first mode shape of a damaged cantilever beam at 100 mm from the fixed end

Fig. 11 Effect of crack position on the natural frequency of the first mode shape of a damaged cantilever beam with 4 mm crack depth from the fixed end

Fig. 12 Effect of crack depth on the natural frequency of the second mode shape of a damaged cantilever beam at 100 mm from the fixed end

Fig. 13 Effect of crack depth on the natural frequency of the third mode shape of a damaged cantilever beam at 100 mm from the fixed end
Fig. 14 Effect of crack depth on the natural frequency of the fourth mode shape of a damaged cantilever beam at 100 mm from the fixed end.

Fig. 17 Effect of crack position on the natural frequency of the fourth mode shape of a damaged cantilever beam with 4 mm crack depth from the fixed end.

Fig. 15 Effect of crack position on the natural frequency of the second mode shape of a damaged cantilever beam with 4 mm crack depth from the fixed end.

Fig. 18 Effect of crack depth on the natural frequency of the fifth mode shape of a damaged cantilever beam at 100 mm from the fixed end.

Fig. 16 Effect of crack position on the natural frequency of the third mode shape of a damaged cantilever beam with 4 mm crack depth from the fixed end.

Fig. 19 Effect of crack position on the natural frequency of the fifth mode shape of a damaged cantilever beam with 4 mm crack depth from the fixed end.
V. CONCLUSIONS

This work attempts to establish a systematic method of prediction of crack characteristics from measurement of natural frequencies using experimental study, following conclusions can be drawn

1. Natural frequency of the cracked beam increases as the crack depth increases and the crack location is constant.
2. Natural frequency of the cracked beam decreases as the crack location increases from fixed end and the crack depth is constant.
3. The results of Finite Element Analysis and experimental analysis are compared and they are in good agreement.
4. The study showed small crack depth ratios had small effect on the sensitivity of the natural frequencies. It was also observed that the changes became more significant as the crack grew deeper.
5. The effect of crack is more pronounced when the cracks are near to the fixed end than free end.
6. Experimental test results can be used to detect and monitor fatigue cracks in beams, shafts or rotating machine element, from which the health of the element could be recorded at various stages of fatigue damage.
7. In the present study, the beams under consideration have uniform cross section but this method can be extended to components with varying cross section, different geometry and any boundary condition.
8. The proposed method can be extended for fault diagnosis in beams, shafts or rotating machine element.

ACKNOWLEDGMENT

It is great privilege extended out the deep sense of gratitude and sincere regards to Prof. S. S. Pimpale who has given me support and timely advice.

Thanks to Prof. S. S. Pimpale for his valuable contribution in developing this paper

REFERENCES