Design and development of dual mass flywheel for improving energy storage capability

D. G. Dighole, Prof. R.S. Shelke

PG Student, Sir Visvesvaraya Institute of Technology, Nashik, Maharashtra, India.
2 Professor, Mechanical Engineering, Sir Visvesvaraya Institute of Technology, Nashik, Maharashtra, India.

ABSTRACT
The rapid developments of vehicle technology over the last few decades, flywheels have been used to achieve smooth operation of machines. The early models were purely mechanical consisting of only a stone wheel attached to an axle. Nowadays, flywheels are complex constructions where energy is stored mechanically and transferred to an integrated motor/generator. The stone wheel has been replaced by a steel or composite rotor and magnetic bearings have been introduced. Today flywheels are used as supplementary UPS storage at several industries world over. Flywheels serve as kinetic energy storage and retrieval devices with the ability to deliver high output power at high rotational speeds as being one of the emerging energy storage technologies available today in various stages of development, especially in advanced technological areas, that is spacecrafts. Today, most of the research efforts are being spent on improving energy storage capability of flywheels to deliver high power transfer, lasting longer than conventional battery powered technologies. This study solely focuses on exploring the effects of dual mass flywheel geometry for improving energy storage capability to deliver high power transfer per unit mass, as compared to conventional flywheel. Dual mass flywheel also reduces the weight of the flywheel using composite materials. In this study using the two spring two mass system to produce useful vibrations which will be employed to increase the inertia of the system and thereby enable to reduce the weight of existing flywheel or increase power output using existing weight of flywheel.

Keywords- Arc spring, Dual Mass Flywheel, Energy storage capacity, Increase power output

I. INTRODUCTION
A flywheel is a mechanical device which is used as a storage device for rotational energy called as kinetic energy. It helps to resist changes in their rotational speed of engine, when fluctuating torque applied on shaft by source it helps to keep steady the rotation of the shaft. Flywheels have become the subject of extensive research as power storage devices for uses in vehicles. Flywheel energy storage systems are considered to be an attractive alternative to electrochemical batteries due to higher stored energy density, higher life term and deterministic state of charge and ecologically clean nature. Flywheel is basically a rechargeable battery. It is used to absorb electric energy from a source, store it as kinetic energy of rotation and then deliver it to a load at the appropriate time in the form that meets the load needs. As shown in Fig.1 a typical system consists of a flywheel, a motor/generator and controlled electronics for connection to a larger electric power system.

Fig.1 shows basic components of flywheel energy storage system the input power may differ from the output power. It is converted by the input electronics into a form appropriate for efficiently driving a variable-speed motor. The motor rotates the flywheel, which stores mechanical energy that is rotational energy generally called as kinetic energy and this energy delivers to a load. The mechanical energy is then
converted into electrical energy by the generator. The variable-frequency electronics output from the generator is converting into the electric power. Since the input and output are typically separated in a timely manner, mostly the motor and generator combine into a single machine, and place the input and output electronics into a single module, to reduce weight and cost. Modern high-speed flywheels differ from their forebears in being lighter and spinning much faster.

a. Introduction of dual mass flywheel
If the power output of an engine is measured first with light flywheel and then again with the standard part on an engine dyno, not changes in power observed. At first it appears that the light flywheel has done nothing and was a total waste of cash. This is not the case. A dyno that shows maximum power at constant revolutions does not demonstrate what happens to an engine's power output in real life situations like acceleration. If an engine is accelerated on a dyno (talking about a rate of around 2000 rpm) it would show a power output is around 20%-25% less than at the constant revolution state. The reason for this is that when accelerating a vehicle the engine not only has to push the total mass of the car but the internal components of the engine need to be accelerated also. This tends to absorb more power as the extra power is used accelerating the internal mass of the engine components and is why a motor accelerating on a dyno will produce less power than at constant revolutions. Also it must be remembered that the rate of acceleration on the engine internals is much greater that the rest of the car. This would then suggest that by lightening the flywheel, less power would be required to accelerate it and therefore more power would be available to push the car along. All engines have flywheels or weighted cranks shafts that balance out compression and power strokes, maintain idle, aid starting and reduce component wear. If the flywheel is too light the motorcycle requires more effort to start, idles badly and is prone to stalling. Weight is not the important factor here but inertia. Due to inertia of body, the energy is stored and is not directly proportional to flywheel weight. It’s possible to have a light flywheel with much more inertia than a heavier flywheel. Any power the motor develops must accelerate the flywheels before leaving the sprocket shaft and any used in bringing the flywheel up to speed is not available at the rear wheel. This will not show up on a steady-state or rear wheel dyno or simple desk-top dyno program but is detectable in a transient dyno that accelerates the engine at a specific rate (300 or 600 rpm per second are common). Flywheel inertia is stored when you revolve the engine slightly before letting the clutch out - this small amount of extra power helps in getting the motorcycle underway with minimal effort. By “borrowing” power for a few seconds the engine has to develop less to move from a standing start. Once the clutch is completely engaged, inertia can no longer be borrowed - the motorcycle can only use what it produces in “real time”. In any event except for when the clutch is slipped all flywheel weight reduces acceleration. As per study the above discussion we can says that the flywheel inertia plays a major role in vehicle to optimized performance. The arrangement of the dual mass flywheel is a solution to the above problem statement where in the inertia is increased using two set of masses phased opposite to each other.

![Mathematical model with two mass two spring system](image)

The arrangement of the dual mass flywheel is best explained by the mathematical model below the model is a two spring two mass models graphically represented as below. The Fig. 1 shows free un-damped vibrations set up of two mass- two spring systems. As shown in the figure the input to the system is in the form of an low energy intermittent input from any power source (excitation), this results in free un-damped vibrations are set up in the system resulting in the free to and fro motion of the mass (m1) and (m2), this motion is assisted by gravity and will continue until resonance occurs that is the systems will continue to work long after the input (which is intermittent) has ceased hence the term free energy is used.

b. Problem statement
In an ordinary conventional flywheel the engines ignition-induced rotational speed irregularity causes torsional vibration in the vehicles driveline also the fluctuations in engines speed. At a given speed the ignition frequency is equal to the natural frequency of the driveline so that extremely high vibrations amplitudes occur that causes rattle in transmission. Also more mass of flywheel increases the cost of engine.

c. Methodology
In this study the two stroke petrol engine is used as a prime mover to run the test rig. In the planetary dual mass flywheel the torsional vibration damper is incorporated into the flywheel as a two arc spring and two masses on the conventional flywheel. For this purpose the flywheel is divided into a primary and a secondary mass hence the name exists “dual mass flywheel”. Transmission rattle is rectified by DMF. Again by reducing the mass and keeping the Inertia factor same will be able to optimize the dual mass flywheel giving the better results than that of conventional flywheel that is power output and efficiency of engine.

d. Objectives of project
1. Development of mathematical model for optimization of flywheel mass to derive stipulated output power.
2. Design and development of inertia augmentation mechanism.
3. Design and development of optimized flywheel using inertia augmentation technique.
4. Test and trial on optimized flywheel using test rig.
5. Plot performance characteristic curves.

**I. Theoretical analysis of Conventional and dual mass flywheel**

**Effect of increased inertia of Dual mass flywheel**

The effect of inertia augmentation can be seen by the difference in the fluctuation of energy in the Dual mass flywheel and the Conventional flywheel. Since, Maximum fluctuation of energy of Conventional flywheel,

\[ \Delta E_{cnv} = m R^2 \omega_{cnv}^2 Cs \]  

Where, \( m \) = mass of flywheel = 1.9 kg  
\( R \) = Mean Radius of rim = 68 mm = 0.068

\( N_1 \) = Maximum average speed of conventional flywheel in rpm  
\( N_2 \) = Minimum average speed of conventional flywheel in rpm

\[ \omega_{cnv} = \text{mean angular speed of dual mass flywheel} \]  

\[ \omega_{cnv} = \frac{2 \pi (N_1 + N_2)}{2 \pi (180 + 910)} \]  

\( \omega_{cnv} = 6990 \text{ rad/sec} \)  

\( \text{Coefficient of fluctuation of speed Cs,} \)

\[ C_s = \frac{(N_1 - N_2)}{N} \]

Where, 
\( N = \frac{(N_1 + N_2)}{2} = 1112 \)

\[ C_s = \frac{(2440 - 920)}{1112} = 0.364 \]

\[ \Delta E_{cnv} = 1.9 \times 0.068^2 \times 6990^2 = 0.364 \]

\[ \Delta E_{cnv} = 156.25 \text{ KJ} \]

Let, 
Maximum fluctuation of energy of Dual mass flywheel,  
\( \Delta E_{dmf} = m R^2 \omega_{dmf}^2 Cs \)

Where, \( m \) = mass of flywheel = 1.9 kg  
\( R \) = Mean Radius of rim = 68 mm = 0.068

\( N_1 \) = Maximum average speed of dual mass flywheel in rpm  
\( N_2 \) = Minimum average speed of dual mass flywheel in rpm

\[ \omega_{dmf} = \text{mean angular speed of dual mass flywheel} \]  

\[ \omega_{dmf} = \frac{2 \pi (N_1 + N_2)}{2 \pi (180 + 910)} \]  

\( \omega_{dmf} = 7414 \text{ rad/sec} \)

\[ \text{Coefficient of fluctuation of speed Cs,} \]

\[ C_s = \frac{(N_1 - N_2)}{N} \]

Where, 
\( N = \frac{(N_1 + N_2)}{2} = 1160 \)

\[ C_s = \frac{(1440 - 920)}{1160} = 0.423 \]

\[ \Delta E_{dmf} = m R^2 \omega_{dmf}^2 Cs \]

\[ \Delta E_{dmf} = 1.9 \times 0.068^2 \times 7414^2 \times 0.423 \]

\[ \Delta E_{dmf} = 204.27 \text{ KJ} \]

From equation (iv) and (viii) effectiveness of dual mass flywheel over conventional flywheel

\[ \frac{\Delta E_{dmf}}{\Delta E_{cnv}} = 1.30 \]

Thus the Dual mass flywheel is 1.3 times effective than the Conventional flywheel.

a. Experimental analysis conventional flywheel

Engine Speed = 1300 rpm;  
Engine Power = 205 watt
Table 1 Observation table for conventional flywheel

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Load (Kg)</th>
<th>Speed (rpm)</th>
<th>Torque (N-m)</th>
<th>Power (Watt)</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>1315</td>
<td>0.470</td>
<td>64.858</td>
<td>31.63</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>1275</td>
<td>0.627</td>
<td>83.83</td>
<td>40.89</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1245</td>
<td>0.784</td>
<td>102.33</td>
<td>49.92</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>1205</td>
<td>0.941</td>
<td>118.85</td>
<td>57.98</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>1185</td>
<td>1.098</td>
<td>136.36</td>
<td>65.52</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>1155</td>
<td>1.255</td>
<td>151.89</td>
<td>74.10</td>
</tr>
<tr>
<td>7</td>
<td>4.5</td>
<td>1020</td>
<td>1.412</td>
<td>150.90</td>
<td>73.62</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>910</td>
<td>1.569</td>
<td>149.59</td>
<td>72.98</td>
</tr>
</tbody>
</table>

Table 2 Result for Conventional flywheel

Sample calculations:

a) Output Torque = \( W \times 9.81 \times \text{Radius of dyno-brake pulley} \)

\[ T_{\text{op}} = 4 \times 9.81 \times 0.032 = 1.26 \text{ N-m} \]  \((ix)\)

\[ \text{Output Torque} = \frac{2\pi N_{\text{Top}}}{60} \]  \((5)\)

b) Output power = \( \frac{2\pi T_{\text{op}}}{60} \)

\[ \text{Efficiency} = \frac{\text{Output power}}{\text{Input power}} \times 100 \]  \((ix)\)

\[ \text{Efficiency} = 74.33\% \]  \((xi)\)

Table 3 Observation table for dual mass flywheel

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Load (Kg)</th>
<th>Speed (rpm)</th>
<th>Torque (N-m)</th>
<th>Power (Watt)</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>1430</td>
<td>1.5</td>
<td>1420</td>
<td>1425</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>1400</td>
<td>2.0</td>
<td>1390</td>
<td>1395</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1370</td>
<td>2.5</td>
<td>1360</td>
<td>1365</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>1320</td>
<td>3.0</td>
<td>1310</td>
<td>1315</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>1280</td>
<td>3.5</td>
<td>1290</td>
<td>1285</td>
</tr>
<tr>
<td>6</td>
<td>4.0</td>
<td>1250</td>
<td>4.0</td>
<td>1240</td>
<td>1245</td>
</tr>
<tr>
<td>7</td>
<td>4.5</td>
<td>1210</td>
<td>4.5</td>
<td>1210</td>
<td>1210</td>
</tr>
<tr>
<td>8</td>
<td>5.0</td>
<td>1190</td>
<td>5.0</td>
<td>1180</td>
<td>1185</td>
</tr>
</tbody>
</table>

Table 4 Result for dual mass flywheel

\[ \text{Efficiency} = \frac{\text{Output power}}{\text{Input power}} \times 100 \]  \((ix)\)

\[ \text{Efficiency} = 80.45\% \]  \((xi)\)

Experimental analysis of dual mass flywheel

Engine Speed = 1300 rpm
Engine Power = 205 watt

Sample calculations:

a) Output Torque = \( W \times 9.81 \times \text{Radius of dyno-brake pulley} \)

\[ T_{\text{op}} = 4 \times 9.81 \times 0.032 = 1.26 \text{ N-m} \]  \((xii)\)

\[ \text{Output Torque} = \frac{2\pi N_{\text{Top}}}{60} \]

\[ \text{Efficiency} = \frac{\text{Output power}}{\text{Input power}} \times 100 \]  \((ix)\)

\[ \text{Efficiency} = 74.33\% \]  \((xi)\)

\[ \text{Output power} = \frac{2\pi T_{\text{op}}}{60} \]

\[ = 164.93 \text{ watt} \]  \((xix)\)

\[ \text{Efficiency} = \frac{\text{Output power}}{\text{Input power}} \times 100 \]  \((ix)\)

\[ \text{Efficiency} = 80.45\% \]  \((xi)\)
Fig. 6 Power vs. speed for conventional flywheel

Fig. 7 Power vs. speed for dual mass flywheel

Fig. 8 Efficiency vs. speed for conventional flywheel

IV Result and discussion

Fig. 10 Comparison of power output of conventional and dual mass flywheel

Fig. 10 shows that by using the Dual mass flywheel the power output is increased by 7 to 8% approximately.

Fig. 11 Comparison of efficiency of conventional and dual mass flywheel

Fig. 11 shows that the Dual mass flywheel is 5 to 6% efficient than the conventional flywheel which also result in increase in fuel economy of the engine.

II CONCLUSION

It is observed that there is approximately 7 to 8% increase in power output by using the Dual mass flywheel and also observed that the Dual mass flywheel is 5 to 6% efficient than the conventional flywheel which will also result in increasing fuel economy of the engine.

ACKNOWLEDGEMENT

I place on record and warmly acknowledge the continuous encouragement, invaluable supervision, timely suggestions and inspired guidance offered by our guide Prof. R.S. Shelke, Professor, Department of Mechanical Engineering Sir Visvesvaraya Institute of Technology, Chincholi, Nasik in bringing this report to a successful completion. I am grateful to Prof. Dr. S.N. Shelke, Head of the Department of Mechanical Engineering for permitting me to make use of the facilities available in the department to carry out the project successfully. Last but not the least I express my sincere thanks to all of my friends who have patiently extended all sorts of help for accomplishing this undertaking.

Finally I extend my gratefulness to one and all who are directly or indirectly involved in the successful completion of this work.
References: